Quantum and braided ZX calculus

نویسندگان

چکیده

We revisit the notion of interacting Frobenius Hopf algebras for ZX-calculus in quantum computing, with focus on allowing to be noncommutative and coalgebras noncocommutative. introduce *-structures at this algebraic level construct examples based group u_q(sl_2) a root unity. provide an abstract formulation Hadamard gate clarify its relationship algebra self-duality. then solve problem extending take place braided tensor category. In ribbon case, coming from self-duality obeys modular identity. give example b_q(sl_2), self-dual version u_q(sl_2).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Braided differential calculus and quantum Schubert calculus

We provide a new realization of the quantum cohomology ring of a flag variety as a certain commutative subalgebra in the cross product of the Nichols-Woronowicz algebras associated to a certain Yetter-Drinfeld module over the Weyl group. We also give a generalization of some recent results by Y.Bazlov to the case of the Grothendieck ring of a flag variety of classical type. Résumé. Nous fournis...

متن کامل

Categorifying the zx-calculus

This paper presents a symmetric monoidal and compact closed bicategory that categorifies the zx-calculus developed by Coecke and Duncan. The 1-cells in this bicategory are certain graph morphisms that correspond to the string diagrams of the zx-calculus, while the 2-cells are rewrite rules.

متن کامل

The ZX Calculus is incomplete for Clifford+T quantum mechanics

The ZX calculus is a diagrammatic language for quantum mechanics and quantum information processing. We prove that the ZX-calculus is not complete for the Clifford+T quantum mechanics. The completeness for this fragment has been stated as one of the main current open problems in categorical quantum mechanics [8]. The ZX calculus was known to be incomplete for quantum mechanics [7], on the other...

متن کامل

The ZX calculus is incomplete for quantum mechanics

Backens recently proved that the ZX-calculus is complete for an important subset of quantum mechanics, namely stabilizer quantum mechanics, i.e. that for stabilizer quantum mechanics, any equation that can be shown to hold in the Dirac formalism can also be shown to hold within the ZX-calculus[2]. For her proof, she relied on operations on a special class of quantum states, namely graph states....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2022

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac631f